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Introduction
e Light and colours

Visible light is part of the electromagnetic spectrum: radiation in which the energy takes the form of waves of
varying wavelength. These range from cosmic rays of very short wavelength to electric power, which has very
long wavelength. Figure 1 illustrates this. The electron beams of X-rays have a shorter wavelength than visible
light, and so can be used to resolve smaller objects than are possible with visible light. X-rays are of course also
useful in determining the structure of objects usually hidden from view: such as bones. A further method of
obtaining medical images is by the use of x-ray tomography
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Figure 1 The electromagnetic spectrum

Image perception e

We should be aware of the limitations of the human visual system. Observed intensities vary as to the
background. A single block of grey will appear darker if placed on a white background than if it were placed on
a black background. That is, we don't perceive grey scales as they are, but rather as they differ from their
surroundings. In figure 2 a grey square is shown on two different backgrounds. The two central squares have

exactly the same intencitv

Figure 2 a gray square on different background
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~ Digital Images e ¢
Digital Images are electronic snapshots taken of a scene or scanned from documents, such as photographs, manuscripts,

printed texts, and artwork. The digital image is sampled and mapped as a grid of dots or picture elements (pixels). Each
pixel is assigned a tonal value (black, white, shades of gray or color), which is represented in binary code (zeros and
ones). The binary digits ("bits") for each pixel are stored in a sequence by a computer and often reduced to a
mathematical representation (compressed). The bits are then interpreted and read by the computer to produce an analog
version for display or printing.

e Resolution

Is the ability to distinguish fine spatial detail. The spatial frequency at which a digital image is sampled (the sampling
frequency) is often a good indicator of resolution. This is why dots-per-inch (dpi) or pixels-per-inch (ppi) are common
and synonymous terms used to express resolution for digital images. Generally, increasing the sampling frequency also
helps to increase resolution.

e Bit Depth

combinations: OO 01, iO, and 11. If "00" r'e[;resents' bléck: and "11" ‘rep'r'ese'n-t's \'/vh'i'te,'ihen "01" éduals dark gfdy and "10" equaIs
i i linht aravs, Tho hit dAanth ic han l‘-\llf tha nllmhar_r\f fones that can
be represented is 2 2or 4. At 8 bits, 256 (2 &) different tones can be assigned to each pixel.

e File Format

It consists of both the bits that comprise the image and header information on how to read and interpret the file. File formats vary
in terms of resolution, bit-depth, color capabilities, and support for compression and metadata.

e Dynamic Range

Is the range of tonal difference between the lightest light and darkest dark of an image. The higher the dynamic range, the more
potential shades can be represented, although the dynamic range does not automatically correlate to the number of tones reproduced.
For instance, high-contrast microfilm exhibits a broad dynamic range, but renders few tones. Dynamic range also describes a digital
system's ability to reproduce tonal information. The varying tones for photographs may be the single most important aspect of image
quality. For example, the left image has a broader dynamic range with limited tones representation, while the right one has a
narrower dynarnin ranna hit a_nareatar niimhare of tongg representation
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1.1 Digital Image Representation

Any image maybe defined as a two dimensions 2D function, f(x,)) where xand yare spatial coordinates and the
amplitude of 7(x,y) is called the intensity or gray level of the image at that point we call the image a digital
image if and only if x, ), and the amplitude 7(x,y) are all finite discrete quantities. Mainly two operations are
required to obtain a digital image: Sampling and Quantization, sampling operation is the process of digitizing
the coordinate values and quantization is the process of digitizing the amplitude values.

1.2 Images and Video Frames

A digital image differs from a photo or picture in that x, y; and 7(x,y) values are all discrete. Usually they have
taken only integer values. It can be considered they as a large array of sampled points from continues video
stream, where the contents of video stream is called frames. Each of which has a particular quantized brightness

of points called pixels which constitute the digital image.
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1.3 Reasons of Image Processing
1.3.1 Image Enhancement

e Highlighting edges

e Obtaining the edges

e Improve the contrast

e Image noise removal

e Image blur removal

1.3.2 Image Restoration :

Reversing the damage happened to an image by a known source like:
¢ Noise effects
e Blur effects
e Optical distortion

1.3.3 Image Segmentation:
Segment an image means subdividing it into constituent parts or isolated objects, for example finding lines,
circles, or a particular shape

4. Digital Image Types

True colure, Red Green Blue (RGB) image
Indexed image

Grayscale (intensity image) image

Binary image

8 <L ST

1. The RGB image:
Here each pixel has a particular colour, that colour being described by its amount

of red, green, and blue. For example if a colored pixel with 8 bits size it means the red has 28 = 256 (0 —
255) intensity level, ang so on for green and blue pixel. (b)
This gives a total of 2563 = 16,777, 216 different possible colures in the pixel, e.q., img.jpg and img.png
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Figure 5 {a) pixel components (h) Three 2D RGB image matrices

e The RGB Color System: to obtain any of the rgb values at a given location, we use the color cube
as shown below.

(0,1,1) cyan [~ 1 e (ul.l,l) white
8(-0,1,0) blue- ™ (1,0,1) magenta
{0, 13.0):5«_»‘_‘ (1,1,0) yéllow
= )
Black(0,0,0) red(1,0,0) R
2. The Indexed image: Figure 6 The RGB cube color model

For convenience of storage and file handling, the image has an associated color map, or color palette which
is simply a list of all the colors used in that image. Each pixel has a value which does not give its color
directly as for an RGB image, instead an index to the color is exist in the map. If an image has 256 colors
or less, the index values will only require one byte to store. Without the color map, the image would be
very dark and colorless, e.g., img.tif

46666
54566 [M38€

56098" . Colour map
1839 ~~

ructure

Each pixel is a shade of grey, normally from 0 (black) to 255 (white) for unsigned integer data class. The
range of intensities means that each pixel can be represented by eight bits or exactly one Byte. This is a
very natural range for 7
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image file handling. Other grayscale ranges are used, they are a power of 2. Such images arise in medicine
like X-rays

e RGB to Grey Image Converting:

The RGB colored image like the pixel (r,g,b) = (100,0,150) could be converted to a gray image using one
of the following formula,

1. The Average method, simply average the values: (R + G + B)/3
gray = (100+10+150)/3 = 86.6667 = 87

2. The Lightness method, averages the most prominent and least prominent colors ( max (R,G,B) + min
(R,G,B)) /2
gray = (250 + 10)/2 = 130

3. The Luminosity method 0.21R + 0.71G + 0.07B. It is a more sophisticated version of the average
method. It also averages the values, but it forms a weighted average to account for human perception.
The fact is the humans are more sensitive to green than other colors, so green is weighted most
heavily. The formula is,

gray=021R+0.71G+007B=386=39

The Luminosity method tends to reduce contrast. It works best overall and it is the default method
used in most applications. Some images look better using one of the other algorithms. Sometimes the
four methods produce very similar result.

4. The weighted average method, 0.299R+ 0.587G+ 0.114B , note that colors are not weighted equally.
Since pure green is lighter than pure red and pure blue, it has a higher weight. Pure blue is the darkest
of the three, so it receives the least weight.

gray = 0.299 (100) + 0.587(10) + 0.114(150) = 52.87 = 53
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Visual Examples: The chart below shows colors on the left and equiavalent grays
on the right, along with the RGB values.

Pure Red (255,0,0) . Equivalent
Pure Green (0,255 _.0) - Equivalent
Pure Blue (0.0,255) - Equivalent
Cyan (0,255,2558) - Equivalent
Magenta (255,0,255) . Equivalent
Yallow (255,25%5,0) Equivalent
Brawn (158, 85,54) - Fauivalent
Olive (155,160,52) - Equivalent

Purple (100,0,150) - Equivalent

Gray (76,76,76) -
Gray (150,150,150) .
Gray (29,29,29) .
Gray (179,179,179) ?‘—“‘i
Gray (105,105,105) -
Gray (226,226,2286)

Gray (103,103,103) -

Gray (146,146,146) .

Gray (47 .47.47) -

Can you convert a grayscale value back to an RGB color code?

Because many different colors can have the same grayscale equivalent, it is not
possible to match a unigque color to each gray value. For example, the colors
below all have the same grayscale equivalent value of (100, 100, 100):

(0,170,0) - (100,100,100 -
(230,53,0) - (100,100,100 -
(80, &83,240) - (100,100,100 -
(230,14,200) - (100,100,100} -

H. Wi/ Suggest (r,g,b) values such that the difference in equivalent gray for all methods as smallest

value.
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3. The Binary Images
In this image type, the pixel is black, "0" value or white, "1" value. We only need one bit size to store pixel

value. Such images can therefore be very efficient in terms of storage and it is suitable for text, fingerprints,
or architectural planes.

Example 1:
A binary image of (512x 512) dimensions. The number of bits needs to store the file size of this image is as
followsFile size of binary image =512 *512 =262, 144 bits or

= 32,768 Byte

=32KB

=0.03125 MB

or File size of gray-scale image =512 * 512 * 8 = 2,097,152 bits
= 262,144 Byte
=256 KB
=0.25 MB

File size of RGB image =512 * 512 * 8 * 3=6,291,456 bits or
= 786,432 Byte
=786 KB
=0.75 MB
Example 2:
An 8bits image in jpg format at 200 dot per inch (200 dpi). The image size is
(450%450) pixels. Calculate its current dimension in inch. If this image is compressed and stored in a new

size of (1.5x1.5) inch with same number of pixels, calculate its new dpi.

Current size in inch = 450 pixel/ 200 dpi = 2.25 inch (for one dimension)
=2.25x2.25inch

New dpi = 450 pixel / 1.5 inch = 300 dpi

10
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Colour System Models1.5

For human beings, colour provides one of the most important descriptors of the world around us. The human
visual system is particularly attuned to two things: edges, and colour. The human visual system is not
particularly good at recognizing subtle changes in grey values. In this section we shall investigate colour briefly,
and then some methods of processing colour images. The human visual system tends to perceive colour as
being made up of varying amounts of red, green and blue. That is, human vision is particularly sensitive to these
colours; this is a function of the cone cells in the retina of the eye. These values are called the primary colours.
If we add together any two primary colours we obtain the secondary colours: for example,

Magenta (purple) = red + blue Cyan = green + blue
Yellow = red + green

A colour model is a method for specifying colours in some standard way. It generally consists of a three
dimensional coordinate system and a subspace of that system in which each colour is represented by a single
point. We shall investigate three systems.

1. The RGB Model

In this model, each colour is represented as three values R, G, and B, indicating the amounts of red, green and
blue which make up the colour. This model is used for displays on computer screens; a monitor has three
independent electron guns” for the red, green and blue component of each colour. This model is already
explained in the past sections

2. The HSV Model

Hue: The “true colour”, it attributes (red, green, blue, orange, yellow, and so on Saturation: The amount by
which the colour has been diluted with white. The more white in the colour, the lower the saturation. So a deep
red has high saturation, and a light red (a pinkish colour) has low saturation.

Value: The degree of brightness: a well lit colour has high intensity; a dark colour has low intensity. This is a
more intuitive method of describing colours, and as the intensity is independent of the colour information, this is
a very useful model for image processing. We can visualize this model as a cone, as shown in figure 5. Any
point on the surface represents a purely saturated colour. The saturation is thus given as the relative distance to
the surface from the central axis of the structure. Hue is defined to be the angle measurement from a pre-
determined axis, say red.

11
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O Saturation 1

.‘
Cirooen Yool lom
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'
- \\'hilq"l

Cyoan Rod 1

Value

I3 lack

Figure 8 The HSV colour space cone

e Conversion between RGB and HSV

Suppose a colour is specified by its RGB values. If all the three values are equal, then the colour will be a grey
scale; that is, an intensity of white. Such a colour, containing just white, will thus have a saturation of zero.
Conversely, if the RGB values are very different, we would expect the resulting colour to have a high saturation. In
particular, if one or two of the RGB values are zero, the saturation will be one, the highest possible value. Hue is
defined as the fraction around the circle starting from red, which thus has a hue of zero. Reading around the circle in
Figure 8 produces the following hues

Colour Houe
T Red O
Yellow 01667
Green 03333
Cynn 0.5
Bluc 06667

Magoenta 0.8333

Supposc we are given three IR, G, 77 values, which we supposce to be betwoen 0 and 1. So if they
arce betwoen 0 and 255, we first divide each value by 255. We then define:

V = max{R G 17}

A | % min{R, G, 17)
)
L

To obtain a value for Hue, we consider several casos:

15 (5]

1. if R Vothen -
O o

Lid If)

2. f G — V then H — ‘—!—(2 +
i

12
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3. if B~ V then H - l (4 = .(').
[ 53 S

If /7 ends up with a negative value, we add 1. In the particular case (R, &,
both V = 8 = 0, we define (H. S, V) = (0,0,0).
For example, supposc (R, G, 13) (0.2,0.4, 0.6) We have

2) — (0,0,0), for which

| % = lunx{(l.Z,().-l. 0.6} — 0.6

S5 = V min{0.2,0.4,0.6} = 0.6 0.2 = 0.4

. 0.4 L
S - —— = .6667

0.6
Since /7 = G we have
K == .'_ 4 4 23 —04¢ ""‘) = (.5833.
G 0.1

Conversion in this direction is implemented by the rgb2hsv function. This is of course designed to
be used on m > 1 % 3 arrays, but let’s just experiment with our previous example:

>> rgbZhsv([0.2 0.4 0.858])
ans =

O .5833 O .6667 O .6000

and these are indeed the H, S and V values we have just calculated.

1.5.3 The NTSC Model

This colour space is used for TV/Video in America and other countries where NTSC is the video standard
(Australia uses PAL). In this scheme Y is the Luminance, | and Q carry the colour information. The linear
conversion from YI1Q to RGB is straight forward:

Y 0.299 0.587 0.114) R
I = 0.596 0.274 0.322 |(.‘|
LQ L 0.211 — 0.523 0.3121 LB
and
‘R "1.000 0.956 0.621 Y
(i] = 1.000 0.272 — ().(347] I | |
REA 1.000 — 1.106 1.703 Q.

The two conversion matrices are of course inverse of each others. Note the difference between Y and V:
Y =0.299R + 0.587G + 0.114B V = max (R, G, B)

This reflects the fact that the human visual system assigns more intensity to the green component of an image
than to the red and blue components.

13
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Since a colour image requires three separate items of information for each pixel, a (true) colour
image of size rn < n is represented in MATLARB by an array of size mn < n x 3: a three dimensional
array. We can think of such an array as a single entity consisting of three separate matrices aligned
vertically.

>> x=imread(*lily.cifr*);
>> mize(x)

186 230 3

We can isolate cach colour component bw the colon opoerator

a2, 21D The Grat, or roed componoent
-2 o o - The sccond, or green componont
x(:,:.3) The third, or blue component

Ihiesses caann all bes viewesd with imshow:

>> imshow(x)
>> figure,imshow(x(:,:,1))
>> figure,imahow(x(:,:,1))
>> figure,imshow(x(:,:,2))

Nhiesser snres aldl shown in figare 9. Notice how the colours with particalar haes show up with high

e

A colouar image Red component Creoen component Blve componoent

Figure 9: An RCEB colour image and its components

intensitioes in their respoective components. For the rose in the top rigght, and the Hower in the bottom
left, both of which are predominantly red. the red component shows a very high intensity for theso
two Howeoerso IN'he green and blue components show muach lower intensitios. Similarly the greon
lesanve=s at the top left and bottom right show up with higher intensity in the green component
than the other two.

We can convert to YIQ or HSV and view the components again

>> xbh=rgb2hsvix) ;

>> dAmshow(xh{(:, :,1))

>> figure. imshowl(xh(:, :,2))
>> figure,imashow(xh(:,:,3))

and these are shown in igare 10. We can do proeciscly the same thing for the Y1Q colour speace

>> xn=rgb2ntsc(x);
>> imsmhow(xnC: ,: _,1))

14
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Flue

Fig. 10 The HSV Components

>> figure. imshow(xnl(: : _2))
>> figure imshow(xn(: : _3))

and these are shown in figare

1

Saturatlion Valuc

Notice that the Y component of YIQ gives a better groyscaloe

Fig. 11 The YIQ Components

15
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1.  Types of Image processing

The processing operation will transform image pixels or gray values into
different values and/or data class depending on the information required to
perform this transformation. Generally we can divide image processing into
three types:

1. Point Processing

A pixel gray value is changed without any knowledge about pixel’s neighbours,
like image matrix addition, subtraction, multiplication..., etc.

2. Neighbourhood processing

To change the pixel or gray level value we only need to know the interested pixel
neighbour’s values, like image filtering for noise removal and features
extraction.

3.  Transforms

The entire image is processing and transforming as a single large block. We
may need to transform an image from its spatial domain into another domain like
frequency domain. Many image transforms will be consider next chapters like,
Fourier, Wavelet, or Cosine transform

Transform Inverse transform

Image
((Spatial domain

Processed original
image

Transformed image
((different domain))

Fig. 2.1 Scheme of image transforming Process

2. Arithmetic Operations on Image Matrix
¢ Addition/Subtraction

The arithmetic operations like addition, subtraction, multiplication, and division
can be implemented on image pixels individually. The result of all these
operations will effect on the pixel intensity 7(x,y). So,

FG Ynew = f(X, Y)osat/-C

C: is any constant value
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If image matrix in the range of (0 ... 255) like uint8 data class, we should
rounding and clipping all values that fill out of the range. i.e;

_ 255 iff(x,y)>255
(X, Y)new ={ 0if f(x, y) <0 }

Ex: Sketch the relation between the old and new pixel values after adding and
subtracting a constant C=128

New value New value
255
128 127 /
127 255 128 255
Old values Old values

Fig. 2.2 image intensities after addition and subtraction of a constant value C

From two figures, we observe that in general adding a constant will lighten an
image and subtracting a constant will darken it.

¢ Multiplication/Division
Lightning or darkening of an image can be done by multiplication operation

Ex: Sketch the relation between the old and new pixel values for the following
operations.

a. f(X, Y)new = f(X, ¥)osd *2
b. f(X, YInew = f(X, ¥)osa +2
C. f(X, Y)new = (f(X: V)osd = 2) +128

New value New value New value

255 255 255
128 iz / 128 /

Old values Old values Old values
; - @ v ) 4 ©
Fig. 2.3 image intensities after multiplication and division operations
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Let us consider the image “saturnstarjpg™ as an example for the following

MATLAB operations

>> b = imread (“saturnstarjpg’) ;
>> |b.map| = rgb2ind (b.64):
>>whos b = Nume size byte

h 084x 1270 Q997440

> bl = uint8( double (b) + 64 )

> b2 = uwinty | double (b) - 64)

or, using the butlt-in function

> b3 = imadd (b2, 64)

>> hd = imsubtract (b2,64)

What is the error in the following two commands?

class

double

Fig2.4 b b+64

b-64

HWI/

Write a MATLAB code to read a jpg image and display the RED, GREEN, and
BLUE matrices individually. Re-display the individual matrices after making the

following change.

Red=Red+75 Green=Green+50 Blue=Blue-128
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Image Resolution2.3

Image resolution can be divided into two types, spatial resolution and effective
resolution. Spatial resolution is the density of pixels over the image, the greater
the spatial resolution, the more pixels are used to display the image. Effective
resolution simply, it is a spatial resolution without any repeated or duplicated of
image pixels. Suppose we have a 256 x 256 8bits gray-scale image is saved to
the matrix X. The image matrix could be resized into half, quarter...etc. as
explain below,

>>X 1= imresize(X, 0.5);

This command will split X matrix into even rows and columns, then a new image
matrix of 128x128 will be created. From figure 2.4, the components of X1
would be the intersections of even rows and columns. The image spatial
resolution is halved but its effective resolution is still same. Now, if the image is
resized a gain to obtain the original 256x 256 image matrix, we apply

>>X2=1mresize(X1, 2);

X11 X12 X13 X14 X15 X16 . 256
X21 X22 X238 X24 X25 X26

X31 X32 X33 X34 X35 X36 .. T " x22 x4 X2 }
X41 X42 X43 X44 X45  X46 X42  X44  X44 X1
X51 X52 X53 X54 X55 X56 X62 X64  X66

X61 X62 X63 X64 X65 X66
X22 X22 X24 X24  X26  X26

256 X22 X22 X24  X24 = X26 X26

X  X42 X44 X44 X46  X46 . X2
X22  X24  X26 > 42 x42  Xa4 X4  X46  X46

X

42
X42  Xa4  X46 X62  X62 X64 X64 X66  X66

Fig. 2.4ean exampledsf 6%6 sub-image resizing xs2 x64 Xx64 X64 X66  X66

Each pixel is duplicated four times and the spatial resolution of matrix X2 is
returned to 256x 256, but the effective resolution is still halved to 128x 128. We
can do all this in one line, see example below.

Commands Effective resolution
imresize ( imresize (X,0.25), 4) Hdx64
| imresize (imresize (X.1/16) . 16) |6x16

imresize (imresize (X, 1/32) ., 32) 8x8



The complement of a gray-scale image is a negative photographic of this image.
Depending on the image data class, complement of image matrix is,

1. Binary image. 0Os=> Isand 1s = 0s
>> m=im2bw([10]) =>1 0

>>-m > 0 1 e vl <255 ol vate

2. Scaled-double image, | — pixel value
>> imcomplement (image matrix name)

3. Uint8 image, 256 - pixel value
>> imcomplement (image matrix name)

e Solarization

A part complementing of an image, for example by taking the
complement of pixels of gray values 128 or less and leaving other
pixels unchanged or we could complement the pixels which are
128 or greater and leave other pixels unchanged. See figure 2.5
below.

Fig. 2.5 Solarization property
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Image Enhancement: Image Histogram2.5

Image Histogram is a graph that indicates the number of occurrence (times) of a
gray level (intensity) in the image. It provides important information about:

o Inadark image, the gray level would be clustered at the lowest level (left
side of histogram)

o In a bright image, the gray level would be clustered at the highest level
(right side of histogram)

¢ Inawell contrasted image, the gray-level would be well spread out over
the range

Ex//

>> | = imread(saturnstar.jpg):
>>imshow (1)

>> figure
>> imhist(I(:.:. 1)), axis tight /# for automatically scaled to fit all values in #/
Given a poorly contrasted image. we can enhance its contrast by re-spreading

out its gray-level and hence its histogram by using the two major methods:

where:
b;, bi+1 : are the lowest and highest of target gray-level

aj, aj+1 . are the lowest and highest of current gray-level

X: is the current gray-level value of image

Y: is the new (re- spreading) gray-level value

Ex// Suppose an image with the following gray-level values,

Gray-level () | 01123 |4| 5| 6 718 (9|10 11|12 | 13| 14|15
n(i) 15(0|/0|0|0| 70|110| 46|/ 70| 0[O0 | O[O | O] 0]15




Let: by =2,b,=14 a;=5, a,=8

Y(5) = (18-2)/(8-5) *(5-5)+2=2
¥(6) = (14-2)/(8-5) * (6-5)+2=6
¥(7) = (14-2)/(8-5) * (7-5)+2=10
Y(8) = (14-2)/(8-5) * (8-5)+2=14

56 7 & 9 10
Gray level

th s Srsas : HW// Suppose new different values for b, = 1, b,= 13, re-spread the middle = :
e Rt clustered values in the previous example. SR




2.5.2 Histogram Equalization

This method provides good results in re-distribute the intensities of image using
a stapdard distributed formula. For any gray image, if L is the number of gray
levels e for 32 gray level, L = 32, so the image intensity range will be:
0 = L -1, and that gray level i occurs i times in the image, If the the total
number of pixel is #, this yields n=ng + ny +... 1, or n= X n(i)

To transform the gray levels to obtain a better contrasted image we change gray
leveli to ? > ny

Ex//
Suppose a 4-bit greyscale image has the histogram shown in the table below.
Draw the histogram graph and make a necessary transformation of gray values.
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With n = 360 we expect this image to be uniformly bright with few dark dots. To
equalize this histogram, we form running total of the n; and multiply each by
15/360 = 1/24. We now have the following transformation of gray
values obtain by reading off the first and the last columns in the table

below.
Gray level () | iy | = ne %(‘-?);360 Rounde
d
value
0 15 15 0.63 1
1 0 15 0.63 1
2 0 15 0.63 1
3 0 15 0.63 1
4 0 15 0.63 1
5 0 15 0.63 1
6 0 15 0.63 1
7 0 15 0.63 1
8 0 15 0.63 1
9 70 85 3.65 4
10 110| 195 8.13 8
11 45 240 10 10
12 80 320 13.33 13
13 40 | 360 15 15
14 0 360 15 15
o 15 0 360 15 15
:_g 80
; 70
40
15
Tin Ojsst b2y Lol 34 6 7 9 14 1513
Gray level

Histogram after equalization
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Neighbourhood Processing & Image Filters
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Chapter Three

Neighbourhood Processing is an extension of point or pixel processing, where a
function is applied to the interested pixel and its neighbours. The idea is to move
a mask which is normally an odd length rectangle over a given image. See figure

mask

at
(xy)

Pixel____

image

The combination of mask and function is called filter. If the function of the new
eray value is a linear of all gray values in the mask, then the filter is called a

linear filter.

Neighbourhood Processing & Image Filters

Neighbourhood Processing3.1

pixels after filtering

3.2 Spatial Filtering Procedure

® Project the mask center over the sub-image pixel

® (Compute the product of mask elements with the pixel and its neighbours
using dot Product ( .* ) operation

® Add up the production result to find the new filtered pixel value. These
operations (addition of multiplication) is called image convolution.

1

s=—-1 t=-1

Z i m(s,£) t(i +5,j +t)



Fig. 3.2 The mask m(s,t)ax3 The sub-image of pixel p(i,j)

|

The multiplication is a dot product process between the mask and interested
sub-image:

new pixel = m(-1,-1) p(i-1j-1) + m(-1,0)p(i-1j) + m(-1,1)p(i-1,j+1) +
MO-1)plij-1)  Fe A

---------------------------------------------------

3.3 Image Frequencies

The frequencies of an image are a measure of the amount by which gray
values change with respect to the distance.

e High frequency components are characterised by large change in gray

values over small distances, like; edges, and noise in the image
Low frequency components are characterised by small or little change
in the grey values. It may includes backgrounds, texture etc

3.4 Low Pass Filters

Depending on the purpose of filtering, Filters could be classified into Low
Pass Filters (LPF) and High Pass Filters (HPF), other filters like Band
Pass Filters (BPF) or Band Reject Filters (BRF) will be discussed later in
chapter 4 and chapter 7. The LPF passes the low frequency components and
reduces or eliminates the high frequency components

e Average/Mean Filter

It is one of the simplest and important linear filters. The mask size could be
3x3, 5x5, 3x5, 5x3 ..... etc. This kind of filter is used to block the sudden
changes (high frequencies) like noise and passes the low frequencies like
image background. The very sharp cut-off frequency the more smeared in
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the output image, so this type of filter tends to smear image edges. Any 3x3
mean filter can be represented by the following matrix.

1/9 | 1/9 | 1/9 1141
1/9 | 1/9 | 1/9 =19 1|11
1/9 | 1/9 | 1/9 A |

Fig. 3.3 Mean/Average mask structure

Ex// Apply the mean filter on the sub-image below and find the output.

a b c new pixel(e)=1/9 (a+b+c+d+e+f+g+h+i)
d e f
g h i

Ex// In this example, we apply the MATLAB commands to filter a magic
(5x5) image

>> | = uint8 ( 10* magic (5) )

170 | 240( 10 | 80 | 150 Stochastic rows = columns = diagonal

230 | 50| 70 | 140| 160

40 | 60 (130 200| 220

100 | 120( 190 | 210| 30

110 | 180|250 | 20 | 90

>> mean2( x(1
>> mean2( x(1

- 1:3) ) 2>A1LTTT = 111

and so, we pass the mask over other pixels, the filtered image dimension
would be (3x3) , why?

-
|

-
% |
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111 109 129
50 70 140

110 130 150
60 130 200

131 151 149
120 190 210

e Type of Filtering Operations

Image circumference or edge should be considered when the mask partly falls
outside image. In such case, there will be lack of gray values to use in the filter
function. Two different approaches deal with this problem.

Elrst._fgnore the edges . the mask is only applied to those pixels in the image as
in the last example. With this example we ignored processing 16 pixels out of 25,

those unprocessed pixels are the circumference or edge of Isxs)image. The
signal length for convolution any two signals is subjected to the formula,

Yim+n-1] = Xm ™ hn
and this interprets the reduction in size of the image I(sxs) to be I(3x3) after

filtering. As a mask size is enlarged, a significant amount of information may be
lost. In MATLARB this filtering operation is called, “va/ia”.

Second. pad with zeros : in order to include image edge in the filtering, we

surround image with zero pixels. This will return the filtered image to its original
size, and the operation is, “Same”. If a second zero padding is added the filtered
image size will be larger than the origin one and the operation now is calling a
“full”filtering operation. See figure 3.4

00 00 00 00 00 00
0000000000 00 00 00 00 00 00
0| l o 00 00
0 same 0 06 full 00
QOO0 0000 () OO0 0 00 O (0
O0 (0 00 O0 (0O ()

Fig. 3.4 Zeros Padding



« Filtering in MATLAB
filter2 (filter, image, ‘shape’) and imfilter (image, filter, ‘shape’)

Are the most two built-in functions they are used for image filtering, shape is

optional and it describes the method for dealing with edges. It either “valid”, TETE b et g
“same”, or “full” operation. The result is a matrix of double data type and the T g et
default shape is same. r i

Ex-1//

>> x = uint8( 10% magic(5) )
>>a=ones(3,3)/3;

>> x_same = filter2 (a, x, ‘same’ );
>>x_valid = filter2 (a, x, ‘valid’);

The result of the ‘same’ may also be obtained by padding x with zeros and
using ‘valid’
by i >> x2 = zeros (7,7);
! ' >> x2(2:6, 2:6) = x
—— >> filter2 (a, x2, ‘valid’);
>> Xf = filter2 (a, x, ‘full’)

The returned result, Xf(7 7, is larger than the original x5y 5

_ - - ‘ where, 7 = order of the matrix + order of the filter - 1 s ‘ _
g tre o —at It does this by padding with zeros and applying the filter at all places on and e Fes Sy
== 3 around the image where the mask intersects the image matrix oAl ES
s )= - Another option to create filter is by using the fspecial function which has many s
v . options for easy creation of many different filters.

>> mask = fspecial (‘average’, [57]) % average filter (5 by 7 is created

>> mask = fspecial (‘average’, [11]) % The default mask is (3%3)

Ex-2//

) e ‘ >> ¢ = imread (‘cameraman.jpg’); e ‘ _
- e >> = fspecial(‘average’); e R ts
5 >> cf = filter2 (f, c(:,:.1)); S

>> imshow (cf ); figure ; imshow ( mat2gray (cf) );

i b L B f - i b L B f - i b L B f - i b L B f - i b




Ex//
150
147
142
151

In this example, we considered a 4x4 block of similar pixel values. After HP
filtering, the result is close to zeros of the filtered sub-image which is the
expected result for low frequency components.

Laplacian (3x 3) = (

Ex-2//

clc,close all,
I= imread ('C:\Program
Files\MATLAB\R2008a\toolbox\images\imdemos\office 6.

B 5
£2
If1
If2

152
152
148
149

148
151
149
150

0.1667
0.6667
0.1667

clear aa;

149
150
151
148

e The Laplacian Filter

The Laplacian is a 2-D isotropic measure of the 2™ spatial derivative of an
image. It highlights regions of rapid intensity change like edge detection.

fspécial('average',[lS] D I
fspecial('laplacian');

filter2 ( f1 , I{( :
imfilter( I( :
imshow (I ); figure ;

’

T ¢ I

s 23), £2 ) 5

imshow (mat2gray(Ifl)); figure;
imshow ( (50 * If2

))

0.6667 0.1667
—3:333
0.6667 0.1667
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r.
™~
Fig. 3.5 ‘ - l ‘
Original imagea) ﬁ .
<

Low pass filtered b)
image

High pass filtered c)
image
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3.6 Contrast Enhancement

The contrast of coloured image like RGB and YIQ could be enhanced using two
different ways. First, the intensity matrix Y in YIQ model can be enhanced
individually and the effect will be appeared on the original coloured image as Y
matrix contains all information related to the intensity. The second method is to
enhance the R, G, and B matrix individually in RGB model and the
enhancement will appear on the original one. Suppose a “cat.tif” image wants to
be enhanced by applying the two methods.

>>[x,map | = imread( ‘cat.tif’);

>>crgh = ind2rghb (x,map);

>>cntsc = rgh2ntsc (crghb);

Apply the histogram to the intensity components (Y) matrix

>> cntsc (:,:,1) = histeq( cntsc(:,:,1));
>>cntsc2 = ntsc2rgb(cntsc)
>> imshow (cntsc2)

Now, we apply the enhancement on individual RGB matrices

>> ctr = histeq( crghb(:,:,1));
>> ctg = histeq( crgb(:,:,2));
>> ctb = histeq( crgb(:,:,3));

We put them all back into a single 3 dimensional array using the concatenate
function “cat( )",

>> crgh2 = cat (3,ctr,ctg,cth);
>> imshow (crgh2)

0 TR

Intensity processing Using sach RGB component

Fig. 3.6 contrast enhancement
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Another important filter is called Laplace of Gaussian filter ““ /og” could be
used for smoothing image and edge detection in the same time,

>> fspecial('log’)

ans =
0.0448 0.0468  0.0564 0.0468 0.0448
0.0468 0.3167  0.7146 0.3167 0.0468
0.0564 0.7146 -4.9048 0.7146 0.0564
0.0468 0.3167  0.7146 0.3167 0.0468
0.0448 0.0468  0.0564 0.0468 0.0448

For (3 3) mask only,

>> fspecial('log',3)

ans =
0.4038 0.8021 0.4038
0.8021 -4.8233 0.8021
0.4038 0.8021 0.4038
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Chapter Four The 2D Discrete Fourier Transform

1. Fourier Transform Properties

o Fourier Transform (FT) is performing many tasks which would be
impossible to perform in any other ways. The advantages of FT in image
processing field could be summarised as:

A powerful alternative method to linear spatial filtering

Fast and More efficient than large spatial filters

Process and isolate some particular frequencies

Perform LP and HP filters in very high precision

Perform Band Reject Filters for image restoration

SR D s

e A periodic function may be written as the sum of sines and cosines of
varying amolitudes and freauencies
) ' |

1 an(?) L IR e (s 1 Iy
M =SmixX) £ L2+ 10 Snl4X) + 4/ Unfax)

Fig 4.1 different amplitudes and frequencies for 1D periodic signals

and for a square wave
1(x) = sin x + 1/3 sin 3x + 1/5 sin 5% + 1/7 sin7x

/.’7(” E )7.’-’;-/‘(‘/.,'./,.

L]

Fig 4.2 square wave components




one dimension Discrete Fourier Transform is.
< xum xum
F(u) = ag + ;f’(x) (a,. t’:o's-xf-+ b,, s_in—M—
or in exponential form,
M-1 -
F) =Y flx) e 2 5
=0

The inverse FT is,

M-1

flo) = 1/MZ FQu) 2™/ 5F)

=0
) Tho: 2D dimensions Discrewe Fourier Transform is;

N—=1 M-1
F(u,v) = Z z fxy) e 2 5+%)

N=0 M=0

And. the inverse of 2D DFT would be,

N-1 M-1
f(x,y) = 1/MN Z Z F(u,v) 2" H5+%)

y=0 x=0

* Similarity
The inverse and forward transforms are very similar with the exception of scale
fuctor 1/MN and the negative sign.
Sotheterm e~/*2™/(5*%) s 100k like a DFT spatial filter because:
The value of fand F are independent and could be calculated separately, so the
value of Flu,v) is obtuined by multiplying every value of flx,y) by a fixed

value, e ’”(%’%) and adding up all the result and this is what a linear filter
does where the convolution in spatial linear filter multiplics all elements under a
mask with fixed values and adds them all up.




* Separability
The ZD‘DFT (filter elements) can be expressed as product of.
- e 2 HEHT) o emrnMF) | em2mi(F)
e - - 3 ' doponds on x & u depondsony & ¥ - : o3 oo
' I wely only . :

so the 2D DFT can be calculated by using the aeparabliity property, we first
compute the DFT for @il rews and then complete the DFT of @il colwmns of
the result,
M—-1N—1 A i
Flu/py= D fO/y) e 2 1GHF)

x.y=0

Fig . 4.3 Apply 2D DFT as a 1D DFT

* Linearity
FT(f+g)=FI(f)+F(g)
FI(kf)=kFtf)
noise can be reduced or removed depending on this property,
d=f+n
Fd)=F(f)+F(n)
- "3 Where: d: degraded image, 1z original image, 0o noise _
el Some noise appears on the DFT in o way that makes it easy to remove ek
* Digital Convolution

Suppose we wish 1o convolve the large image M with a small mask S, This
method of convolution is very slow, so we pad S with zeros 1o be with same
size of image M and do the multiplication

H=M?=*S

FOH )= F(M). F('s ) ({ convomtion in time domain equats routliplication in frequency domain )y
and the inverse wouldbe. F~YH) = F Y E(M ). F('s))




® The DC cocfficients

The de situation is satisfied when all f’mequency equal o zero,
(u=0, v=0) in the transformation formula

z "z 2 (520 %2)
¥ F(0,0) = ) flx,y) e 3™
! y=0 x=0

N-1 M-1

F(0,0) = Z z fley)

y=0 =x=0
That means the summation of pixels in the original image equal to the DC

H.W/H

! The convolution of Mgiausiz and  Syuuqs is required (512)% x (32)7
‘ multiplication process 10 be completed. How many process of multiplications
do the need for 2D DFT.

* Conjugate Symmetry & Shifting ‘
It is convenient 1o have the DC component in the center of the transformed
matrix for the purpose of display. Also, the symmetry property of the Fourier
. po.e o 3 transform could be obtained by substituting . |
iy o e - (u=-u)and (v =-v)in the 2D DFT formula b1 sckre Sruwaisted & A
S ; ~ The sign will be +ve ; - P

%8 N-1 M-1
2! Fu,v) = > fey) e 2 R)
Fluv)=F(—u+pM,—v+qgM)’




¢ MATLAB built-in function for 2D DFT

- ffi2 ( image matrix )

- ifft2 (image matrix)

S et Sttt - fftshift (image matrix) s o
T— - fshifi ( ffi2 (image matrix ) ) : T—

* Ex-l

>> A =ones (8)
>> Af =2 (A)

Ans=640000000
0

0 0000000

An image is considered as a two dimensional function f(x,y) and can be
expressed as sum of corrugation functions having the general form,

Z = a sin (bx + cy). In this example, no corrugations are required to form a
constant,
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00 2 X 160 ( ) -3200 0O )

1002 1 X ) 0 0 (

100 20% X 200 100 200 100 200 0 ) 0
Note: The IX Q6N 150764, the mirroring of values about the ¢ effi nois o
sequence of the symmetry of the DFT which is reguired o form an ed

There is one way to display the image spectrums

in frequency domain. We
stretch out the spectrum values by taking the logarithm of |F(u, v)| using the
MATLAB command

- / ) ) i ] y S 1trd
=3 fmshow ¢ mat2eray ( loe (1+ abs ( FD image matriv ) ) 1)

e [x.3
>0 = | zeros (256,128) ., ones (256,.128) |:

>> al = fitshifu 2 ca)

>> imshow ( ma2gray ( log ( 1+ abs{ af ) ) ) k

* Exd

v ¢ = zeros (256256 )
>> C(78:178,. 78:178) =1
s> cf = fltshifyy M2(c¢)

>> mshow (¢)

>> mnshow ( ma2oray ( log ( 1+ abst ch) ) )

af c
Fig 4.5 frequency domain spatial domain

frequency domain
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® Ex-3 This example expliains how to create a circle as it used as o frequency domain
filter

imshow ( mat2gray ( log ( 1+ abs((clf) ))))

imshow ( mat2gray ( abs ((clf) ))

Fig. 4.6 The circle (LPF) and its transformation in the frequency domain



The meshgrid( m . i ) of [x,y] will create two overlaid matrices (x and y) each
one with two dimensions ( n1, 1 ), for example:

>> [vy] = meshgrid(]:3.1:5) >> [,y = meshgrid(2:6,1:3)

Ans arns

X=

4.2 Filtering in the Frequency Domain

One of the reasons for the use of the Fourier transform in image processing is
due to convolution theorem. A spatial convolution can be performed element
wise multiplication of the Fourier transform by a suitable “filter matrix™

4.2.1 Ideal Low Pass Filtering

Alfter shifting the DC coefficients of any transformed image toward the centre,
all low frequency components will be moved to the centre as well. We can
perform LP filtering by multiplying the transform by a matrix in such a way that
centre values are maintained and values away from the centre are either
removed or minimized. One way to do this is to multiply by an ideal low-pass
matrix, which is a binary matrix, say m defined by

LP filter 2 mix.y) = 1if(xy) is closer to the centre than some value, Coy o
O if (x.x) is further from the centre than Ceyp orp

The inverse FT of the element-wise product of any image says, I and m is,

F~Y%1.m)
The smallest circle radius, the sharpest Ceyp ofp frequency we obtained and the
inversed image would be more smeared. See figure 4.7
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4.2.2 Ideal High Pass Filtering

Just as we can perform LP filters by keeping the 2D DFT centre values and
eliminating the others, so HP filters can be performed by the opposite:
climinating centre values and keep the others. This can be done with & minor
modification of the preceding method of LP filtering. See figure 4.8 and 4.9

o Ex-6

(&) Cutoff of 5 (b) Culofl of 30
Fig 4.7 Frequency domam LPF of cameraman image

As long as ideal filtering is required a dot product to be completed. it is very
important to match the size of filter with the size of transformed image. The
necessary MATLAB steps for size matching are:
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Fig. 4.8 Ideal HP filters with their transformations: c1>5, ¢2>25, c3>50

Fig. 4.9 ideal HP filtering for cameraman with cut off frequencies 5 and 30
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Tutorial

507

The image matrix Aszx3=[1 — 1 0] is required to be transformed to the
2 3 4

frequency domain by applying the 2D DFT, calculate:

The DC values

The transformed image AF

The shifted transform image AFS

The mirror components

Restore the original Azx3 matrix from AF

Restore the original A3x3 matrix from AFS

Make the DC value of ASF = 0 and recalculate the original Azxs .

Is there any difference in the Asxs values in e, f, and g?

@+oaoo0ow
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Image Degradation and Restoration Chapter Five

5.1 Image Degradation Model

Image restoration concerns about remove or reduce a degradation which have
occurred during image acquisition. The reasons of degradation may include:

e noise: which are errors in the image pixel value
¢ Dblur: which is the distortion or smearing in the image because of camera
motion or out of focus.

The degraded image could be successfully restored using two domains,

¢ neighbourhood operations, or
o frequency domain processes
let f{x, y)is an image and A( x, y)is a spatial filter, so

&xy) = fixy) * hixy)

is a convolution formula that has some form of degradation. A noise must be
considered in this formula which can be modelled as an additive function to the
convolution formula as follows,

gxy) = fixy) * hixy) + n(xy)

in frequency domain becomes,

G(U,V) = FU, V) .H(U,V) + N(U, V)

2. Types of Noise:

Noise is defined as any degradation in the image signal caused by
external disturbance such as:

o Wireless transmission

o Satellite transmission

o Network cable transmission
Errors appear on the image output in different ways depending on the
type of disturbance in the signal. If we know what type of errors in the
image, we can choose the most appropriate method for reducing the
effects. Cleaning an image corrupted by noise is an important area of
image restoration.
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5.2.1 Salt and Pepper Noise

Also, called impulse noise, shot noise, or binary noise. This degradation
can be caused by sharp and sudden disturbances in the image signal. It is
randomly scattered white or black or both pixels over the image.

Ex//
> >t = imreaa( ‘twin.tif’);

>> tg = rgb2gray (1);
>> tn=imnoise (tg, ‘salt&pepper’, 0.2 ); % default noise is 10%

(a) Original imoge b) With added salt & pepper nois
Fig. 5.1 Twin image is degraded by %20 of salt and pepper noise

5.2.2 Gaussian Noise

It is an idealized form of white noise, it is caused by random fluctuations
in the signal, we can observe white noise by watching a T.V which is
slightly mistuned to a particular channel. It is normally distributed and for
example if | is an image matrix, N is a white or Gaussian noise, so
M=/+N where, 14 Is a noisy image
The “Gaussian” parameter can also take optional values giving the
mean and variance of the noise, the default values are mean ( = 0) and
standard deviation ( = 0.01)
>> tgn = imnoise ( tg, ‘gaussian’)
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5.2.3 Speckle Noise

It is also called a multiplicative noise and it is a major problem in some radar
applications. Like Gaussian noise, speckle can be modelled by random values
multiplied by pixel values, / (Z+ N). So,

M=/+IN=I1+N)

N: consists of normally distributed values with mean 0 and its default value is
0.04,

>> tsp = imnoise (tg, ‘speckle’)

v,
(a) Gaussian noise (b) Speckle noise

Fig. 5.2 Twins image is degraded by Gaussian and Speckle noise

5.2.4 Periodic Noise

This type of degradation has a global effect, and it is not easy to remove or
decrease its effect using traditional cleaning methods. If image signal is

subjected to a periodic rather than random disturbance, we might obtain a
corrupted image by periodic noise. Periodic noise may occur in the image

because of:

1. Image equipment
2. Network equipment
3. External disturbance of repeating nature like electric motor

The effect is look like bars over the image. All other noises like; salt & peppers
or Gaussian noise could be removed using spatial filters while periodic noise
requires the use of frequency domain technique to decrease the degradation
effect or remove it. This is because the other forms of noise can be
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modelled as local degradations while periodic noise has a global effect. We can
simulate the worst effect of periodic noise using any periodic function like,
exponent, cosine, or sine function:

>>s-size(1g)

>>[x,y/]=-meshgrid (1:s(1), I:5(2))
>>P- 1 +sine (x/3 +Y/5)

>>tpk - (imZdouble (1g) + F/2 )/ 2

/

Fig 5.3 Twin image corrupted by periodic noise

5.3 Image Restoration: Noise Cleaning
5.3.1 Salt & pepper Noise Removal

The sudden change in the image pixel value for this kind of noise can be
represented as a high frequency change and this high frequency can be blocked
or filtered using /ow pass filters. The next sections will discuss many filtering
techniques for cleaning different noisy image

eMean Filter: as shown in the figure 5.4, the filtered image is not well cleaned
as the noise is smeared over the image. The effect is even more pronounced if
we use a large averaging filter.

>> fav = fspcial (‘average’)
>> fav = filter2 ( fav, tn )
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eMedian Filter: a median filter is an example of a non-linear spatial filter. It is
widely used as it is very effective at removing noise while preserving edges.
The median is calculated by first sorting all the pixel values from the window
into numerical order, and then replacing the pixel being considered with the
middle (median) pixel value. If window elements are even, the middle is
computed using the mean of the adjacent two pixels.

50| 65 |52
63| 255/ 58 50 52 57 58 60 61 63 65 255

&L\ B0 |Shearfilez (tn )

(a) 3 x 3 averaging (b) 7 x 7 averaging

(a) Using medfilt2 twice (b) using a 5 x 5 median filter

Fig 5.4 Noisy Twin image is cleaned using averaging and median filters
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¢ Gaussian Filter: this filter is a class of low pass filters, and as LPFs  does, it
tend to smooth the image. It is based on the Gaussian probability distribution
function, for two dimensions image.

x4+ y?

fl xX,y)= e 2a°

Large value of o Small value of o

(a) One dimensional Gaussian’s function

(b) Two dimensional Gaussian’sfunction

Fig. 5.5 (a) and (b)

Ex/I

g = fspecial(‘gaussian’,3,5)

g= 0.1118 0.1096
0.109

6
0.111 0.1141 0.1118
8
0.109 0.1118 0.1096
6

g = fspecial(‘gaussian’,3,3)
g= 01070 0.1131  0.1070
0.1131 0.1196  0.1131
0.1070 0.1131  0.1070
g = fspecial(‘gaussian’,4,3))
g= 0.0623 0.0623 0.0558
0.055
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Fig. 5.6 effects of different Gaussian filters on image

HW!// The array Igxg represents a small grayscale image. Compute the “valid” filtered images
that result when the image is convolved with each of the mask (a) to (h) below.

-1 -1 0 0 -1 -1 -1 -1 -1 -1 2 -1
(a) -1 0 1 (b) 1 0 -1 (c) 2 2 2 (d) -1 2 -1
0 1 1 1 1 0 -1 -1 -1 -1 2 -1
-1 -1 -1 1 1 | -1 0 1 0 -1
{¢) -1 8§ -1 (f) 1 1 1 g -1 0 1 (h) -1 4 -1
-1 -1 -1 1 1 1 0 1 1
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20 (20 |20 | 10{ 1010|1010
20 (20 | 20| 10| 10|10 10|20
20 (20 [ 20| 10{ 10101020
20 |20 [10] 10{ 20| 102010
20 |10 [ 10| 10| 10|10 20|10
10 |10 | 20| 20( 10| 10| 20 | 10
10 {10 [ 20| 20{ 10| 10| 1010
20 |10 | 20| 20| 10| 10 |20 20
Check your answers with MATLAB.

5.3.2 Gaussian Noise Removal

e Mean of Multi-noisy Images: With Gaussian noise instead of one
corrupted image, we have many different Gaussian noise corruption
images. If the satellite passed over the same spot many times, we will
obtain many different images of the same place. Another example is in
microscopy, we might take many different images of the same object.

Example:
Suppose we have 100 copies of Gaussian noisy image, so it’s still true to
express the formula,
M + N;
where M is the matrix of original values, and N, is a matrix of normally

with mean 0, We can find the mean M’ of these images by the usual ade

A L ST(M N

1) &~

2 Sy YN

1
1) &~ LNy &~ "'

12N

[IN) &~

Since N, is normally distributed with mean 0, it can be readily shown tha
will be close to zero  the greater the munber of N, 's; the closer 1o zero

M=M

and the approximation is closer for larger number of images M + N,

9% See figure 5.7
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e Averaging Filter: The Gaussian noise has mean = 0, then we expect that mean
filter would average noise to zero. The larger size of the filter mask, the closer
to zero the value of the mean. Unfortunately mean filter tends to blur an image,
however if we accept blurring against noise reduction. This method can be
applied.

(n) 10 inages (b) 10 images

Fig. 5.7 Gaussian noise removal using the mean of multi noisy images

(a) 4 x 3 averaging (b) 5 x 5 averaging

Fig. 5.8 Gaussian noise removal using mean filter
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5.3.3 Periodic Noise Removal
e The Ring Filter

We have discussed how to create periodic noise bars and how to add them into
an image using periodic function like s/ne. In this section we shall remove or
decrease the degradation effect of this noise by designing frequency domain
filters. The filtering in frequency domain like LPF and HPF are already
discussed in section . Periodic noise in spatial domain would be appeared as two
shiny spikes in frequency domain. The locations of those two spikes are
completely related to (xand v) values in the periodic function, see figure 5.9. The
next step is to design a Band Reject Filter, or commonly called Ring filter to
reject the spikes. The next step is inversing the FD filtered image back it again
into spatial domain. See the block diagram in Fig. 5.10.

Fomg s w2l eginy) S

e

s

Fig. 5.9 different degradation images depending on sine (x + ) function

Periodic, noise Ring filter
l Spatial to Cleaned Inverse 2D
Image 3 /T ;) frequency image in DFT image
>/ domain ) Freqdomain 7| into spatial
transformation | \_ ) -
noise removal image degradation

Fig. 5.10 image restoration/ periodic noise removal in frequency domain




Example: This example demonstrates periodic noise addition and removal
using Band Reject Filter or commonly known a Ring Filter

clcy; close ally clear all

I = dmread ('C:\Program
Files\MATLAB\R200Ba\tcolbox\imagss \imdemos\pears.png');
I = rgb2gray(I);

[r,c] = slze (I)}
I[x, y] = meshgrid(l:c, 1:r);

pl =1 +sin (x+ y );
I2 = im2double(I) + pl ;
tgpf = fftshift ( ffe2 (12) );-

subplot (2, 3,1); imshow(mat2gray (I*1.2)) ;title ('original gray') ;
subplot (2,3,2); Imshow((12/2));title('nolsy image in Spatial domain');

subplot (2, 3, 3) ;imshow (mat2gray( log ( abs(tgpf) ) ) ) ; title
('noisy imags in Freq. domain ') ;

z=3sqrt ( (X -¢c/2)."2+ (y—-r/2)."°2);
F= (2 <135 | 2z > 145 );

resf = tgpf .* F ;

resi = ifft2 ( resf );

subplot (2, 3,4):imshow (mat2gray( log (1+ abs{(resf) ) ) ); title ('noiay
image X Ring filter ') 3

subplot (2,3,5);imshow (mat2gray ( log (1+ abs(resi) ) ) ) ; title
('F= (2 < 135 2> 145 )2 =&

F2= (z <20 | z> 190 );
resfZ = tgpf .* F2 7
resil = 1£_t‘t2 { resf2 );

subplot (2,3, 6);imshow (mat2gray ( log (I+ sba(resil2) ) ) ) ; title
(‘F2= (2 < 20| 2> 180 )¢ ") 2
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ogwal gy nany Inege 0 Sgatcl dywan

DoAY A0 i Frag comar

oy (g X Rvng M

Fig. 5.11 Pears image is degraded by periodic noise and cleaned by Ring filter

e The Notch Filter

Another method can be used to clean the noisy image in the frequency

domain is by setting the spike intersection lines to zero, i.e.; the interested
row(s) and column(s).

HWI/

Apply Notch filter method to clean the pears noisy image above and compare the
result with the ring filter.



5.34 Winner Filter:

We know that the Gaussian noise (V) is normally distributed with mean
(1 = 0 ). Here, if we have an image X is filtered with a filter F and corrupted by
an additive or Gaussian noise, the linearity of the Fourier transform is,

Yiij)= X (i) . Fi)+ NGij)
X(i) =1 Y(i,) - Neij) 1/ Fiij)

The presence of noise can have a catastrophic effect on the inverse filtering
where the noise can completely dominate the output and making the direct
inverse impossible. Since we are dealing with the additive noise, the noisy
image M" can be written as: M’ =M + N and if R represents the restored
image, so our target is making R value close to M. In other words we want the
result of this formula:

Y (mij—rig)?

to be zero or close to zero. Filters which operates on this principle of Least
Squares are called Winner filters, we can obtain X by

o [t IFGDR: T-vy
X)= [rrmagpes] Y60
Where K. is a constant and it is used to approximate the amount of noise. If the
variance o* of the noise is known, then k = 2a? otherwise, k can be chosen by
trail and error to yield to the best result. Note that when k = zero, then the
equation will be reduced to

X(ij)= [r(m

HW//
Write a MATLAB code to apply Winner formula on your Gaussian noisy
image. Explain if the restored image is satisfied or not.



) = s L)

2" Using “division constrained” or threshold value d. so if the |F(i,/)| < d.

don’t perform a division but just keep the original Y(i.j) value, thus

...... - WFIFGHI 2 d

......... it |F(L.))| <d

' The removal of blur caused by motion would be a special case of filter inverse
in frequency domain.

Ex:
originalRGB = imread { ‘pepperspmg’ )
I = fapecial( ‘motion’. 50, 45 );
~ filteredRGB = imfilter (originalRGB.h); - | :
" figure. imshow (originalRGB), figure. = Sl Wy v e s
| imshow (filteredRGB) o i

i b L B f - i b L B f - i b L B f - i b L B f - i b



Image Degradation and Restoration

Chapter Five

EX: The second method can be implemented in MATLAB code below

xii,h= 2L L R = d
Iy

or,

X(£,)) = Y(L]) ween i |F(LD| <d

cle, close all , clear all;
n=imread (‘image.jpg’);
ng= rgb2gray (n);
[r.c]=size (ng)

blur= fspecial (‘motion’, 15);
nb= imfilter (ng, blur);

fr=zeros(1:r, 1:¢c);
fr(1, 1:15) = blur;

d=0.12;

frf=ff2( fr );
frf(abs(fif)<d)=I:

vi = ifft2 ((ffi2(nb ) )./ fif );
imshow uim8 ( yi ) ;

HW//

Write MATLAB code to implement the two methods of de-blurring on your
selected image. Use different threshold values( d ) and compare the result of

the two methods.
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e Image Segmentation

e Image Thresholds

e Edge-detection

e Edge-detection, the 1" derivative
o Edge-detection, the 2" derivative
e Horizontal Edges

e Vertical Edges

e Diagonal Edges

e Hough Transform
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Image segmentation6.1

Segmentation process refers to the partitioning of image into component parts
or separated objects. It can be implemented by two methods:

e Thresholding
o Edge detection
Thresholding is a vital part of image segmentation when we want to isolate
object from its background and It is classified into three types,
1. Single threshold
2. Double threshold
3. Adaptive threshold

1. Single Threshold: this type uses single gray-level to detect or hide some

information in the image. So an grey image can be converted to a binary
one using single threshold value.

If pixel > T ...... pixel > White .
Grayimage | it bixel T ...pixel >Black

For white objects like rice, we apply the greater operator (=)

r = imread ( ‘rice.tif’),

imshow ( r), fieure , imshow ( r=> 100 )

While the less operator 1s used for detecting dark objects
b = tmread (‘bacreria tif’)

imshow ( b} , fieure , imshow (b > 100 )

Fig. 6.2 rice and bacteria threshold
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Also. the mstruction: e 2bw ( image » /) will create a binary

image matnx according to threshold value.
im2bw ( r, 0.43)

mswi h 0.39)

2. Double Threshold

Sometimes we need more than single threshold value because of our interested

objects have a range of grey-levels. So,

Ty <pixels < T, = White otherwise pixels = Black
mread (spine 11
£ 4 Ir 1 n
e
115 & ]

Fig. 6.3 Image needs double thresholds

3. Adaptive Threshold
This case is satisfied when objects and their background are varying in gray

level.

Background (darkness) >

Objects brightness
Fig. 6.4 Image needs adaptive thresholding
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Edge Detection6.2

Edge is a local discontinuity in the pixel values which exceeds a given
threshold. Also, it is defined as an image processing technique for finding the
boundaries of objects within images. It works by detecting discontinuities in
brightness. £dge detectionis used for image segmentation and data extraction in
areas such as image processing, computer vision, and machine vision.

It includes a variety of mathematical methods that aim at identifying points
in a digital image at which the image brightness changes sharply or, more
formally, has discontinuities. The points at which image brightness changes
sharply are typically organized into a set of curved line segments termed eages.
The same problem of finding discontinuities in 1D signal is known as steo
detection and the problem of finding signal discontinuities over time is known
as change detection. Edge detection is a fundamental tool in image processing,
machine vision and computer vision, particularly in the areas of feature
detection and feature extraction.

Example:
50 | 53 | 165 | 166 50 | 53 | 52 | 53
51| 53 | 167 | 170 51 | 53 | 51 | 53
52 | 53 | 177 | 180 165 | 166| 177| 180
51 | 53 | 165 | 175 167 | 170| 165| 175
(a) vertical edge (b) horizontal edge

Fig. 6.5 (a) and (b)

A commonly used approach to handle the problem of appropriate
thresholds for thresholding is by using thresholding with hysteresis. This
method uses multiple thresholds to find edges. We begin by using the upper
threshold to find the start of an edge. Once we have a start point, we then trace
the path of the edge through the image pixel by pixel, marking an edge
whenever we are above the lower threshold. We stop marking our edge only
when the value falls below our lower threshold. This approach makes the
assumption that edges are likely to be in continuous curves, and allows us to
follow a faint section of an edge we have previously seen, without meaning that
every noisy pixel in the image is marked down as an edge. Still, however, we
have the problem of choosing appropriate thresholding parameters, and suitable
thresholding values may vary over the image

We have computed a measure of edge strength (typically the gradient
magnitude), the next stage is to apply a threshold, to decide whether edges are


https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Change_detection
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Adaptive_thresholding
https://en.wikipedia.org/wiki/Hysteresis
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present or not at an image point. The lower the threshold, the more edges will be
detected, and the result will be increasingly susceptible to noise and detecting
edges of irrelevant features in the image. Conversely a high threshold may miss
subtle edges, or result in fragmented edges.

The general MATLAB command for image edge detection is,

>> edge (Image name, ‘method’, parameter )

6.3 Image Profile

The grey image profile in figure 6.6 can be plotted and the first derivate is
applied to detect the discontinuity in the pixel values.

slep
25 I e P
/ x)
»i/ [ /
Y e— f =
7
[ v — e
{brey ik |Erey
| | fa=str
a4
> ==X
| | e | _
— 7‘ lor froe ] e ,‘J .
Vi eI ¢ |

o/

Fig. 6.6 image profile and its first derivative periods

From figure 6.6, the derivative returns zero for all constant sections of image
profile and it returns non-zero in those parts of image in which different occurs.
To apply continues derivative on a discrete image we suppose that:

; fleah)= fix) Jix)= f(x=h) q flx+h)=[(x=h)
limy, g St = i), o == = l{M ps o3 ......_.__'._..._.._

dx h k& h

f =1 we obtained f(r+ 11— [{x)


https://en.wikipedia.org/wiki/Image_noise
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For two multidimensional image, we apply partial derivatives which-s

also called the Gradient Vector Expression for a function f( x,y) points in the
direction of its greatest increment. So, the direction of increment angle is:

] the magnitade of mcrement, M

Most edge detection methods are concerned with finding the magnitude of the
gradient then applying a threshold to the result.

6.4 Prewitt, Roberts, and Sobel Filters

This type of filters can be used to find the horizontal and vertical edge(s) in the
image. The horizontal mask [ -1 0 1] is used to detect the vertical edge, while the
mask [ -1 0 1 is used to find the horizontal edge. The edges in the result can be
smoothed using the masks [ 1 1 1] and [ 1 1 1 . The vertical and horizontal
Prewitt edge detectors are.

Py =

-1 0 1 -]1—-1-1
-1 0 1 and Pp=Pyr=10 0 0
-1 0 1 1 1 1

Ex: Consider the following 3x3 sub-image.

a, a,; as
l — ((4 “5 U(,
7 Qg Ug



K= A1 Py= -ty + 0y =y + 20— + ag

y=14]* Py=-a,—a;—az+a;—ag + @
: diagonaledge-sqn(z*+ y% ) ... also it is more convenient to use either of,

diagonaledge=m{/xl.lyl} or /x/i+iy/

Example: }
This example will highlight the vertical. horizontal, and diagonal
edges in the integrated cct image.

% vertical edge

FYs Dais wire ol ic= imread(" ic.tif '); Sre it gt} e
== | px=[-101;-101;-101]; =H3 =tk
e & iex= filter2( px, ic); ! et
imshow (icx /253);

% horizontal edge
py=px’
icy= filter2( py, ic):

figure, imshow (icy /233);

% diagonal edge
dig=sqrt (icx "2 + icy ")
figure, imshow (dig /255);

or, using the command

>> dig = edge ( ic, ‘prewitt’ );
or, using binary image

bedge = im2bw ( dig / 233, 0.3 )



Other edge detection filters like Roberts and Sobel can be defined helow:
10 0 o 1 0
R,-[o-—'l o] Ry=[—1 0 o]
00 0 ‘ 0o 0 0
VGt -1 0 -1 ' L GE Pl o o e GE '
- , -1 0 1 et [i1 9
sz - — 3-L is known a discrete Laplacian and it is a 2* derivative in
L 0 0 L
both directions. The mask [ 1 -4 1 ] 1s a good example that could
. ) ' 0
represent the 2™ derivative of Laplacian method. This class of filter is ideal for
edge detection where. it is invariant under rotation (isetropic filter) that means
L et ‘ Laplacian + image rotation same _ - ‘ _
T image rotation + Laplacian result AT
The disadvantage of all 2*' derivative is the noise sensitivity.
3 ﬂ' eJ‘" ZJJ %I'-/‘(fbl'
% s b il R § 48 5 fite 0""“1"”? /‘s»/a’f V#/arj Lods . ' Lods
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T'he result will not be better than Prewitt or Sobel filters, so we can try with
other Laplacian masks:

(c) Laplacian 2™ derivative, noise
. _sensjtive

Fig 6.9 diagonal edges for Roberts;-Sobel-and Laplm.q..??ﬂc.a

HW// Try to use Laplacian mask with “ALPHA” parameter. How is the result.



appropriate use for the Laplacian is to find the position of edges by locating zemo crossings.

~If we Jook at figure 8.10, we see that the position of the edge is given by the place where the value

of the filter takes on i zero value. In general, these are places where the result of the filter changes

 sign. For example, consider the the simple image given in figure 8.12(a), and the result after filtezing
m.mmuw&xm).

@ |u]nlmfalnlnlols]s
] isafvalsefis o))
3 )0 i ot mief i aon] s 6 ||
30 [0 Jowe fovoJsin s fsonf ] o0 [ 0
0.1 5 0o i i e inaf o] s | |

| Wo define the 2ero crossings in such & filtered image to be pixels which satisfy either of the
following:

1. they bave a negative grey value and are next to (by four-adjacency ) a pixel whose grey value
is positive,

| 2. they have a value of zero. and are between negative and positive valued pixels.

>> lIp = fspecial (‘laplace”’, 0);
>> icdig = edge (ic, ‘zevocross’, Ip );
>> imshow (icdig):

The result is not good because of the interruption of many gray-level changes,
s0 to eliminate this effect we smooth the image with a Gaussian filter so we
have a new method for edge-detection. See figure 6.10

6.7 Manr-Hildreth Method
o Smooth the image with a Gaussian filter
e Convolve the result with a Laplacian
o Find the Zero-Crossing

>> log = fspecial (‘log", 13, 2);
>> dig = edge ( ic, "zerocross’, log);
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Zero-crossing

using LoG filter first
&9 6 Pdgec s RIPRY-S AT PR sform
Most of edge detection methods has disadvantage in linking the points along
boundary or straight line. Hough transform is a way of finding boundary lines

between the regions. It fits a line to those individual points, so it can be used to
determine whether points lie on a curve or of a specific shape .
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Chapter Seven

Image Compresion:
The Hurrman Coding



Codes and Compression
Run-length encoding
Huffman coding and Entropy
Huffman coding algorithm

7.1 Codes and Compression:

'CODING: Fewer bits to represent frequent symbols. B
COMPRESSION: Is the process of coding that will effectvely reduce the total number of
bmnmutommmnmnmmmmmmmsmm
the amount of data required torepresent an image. There aretswo main categories

1. Lossless compression where all the information is retained and it is preferred for images of
legal, scientific or political significance, where loss of data, even of apparent insignificance,
could have considerable consequences. It Is applied on computer program, medical
images, GIS, and .gif files

2. Lossy compression where some information is lost, it is applied on TV signals,
teleconference, .mp3, .jpg

Someapplmom:eqmthememmscmmbeapabkofmodwmgme
orlglmldeyth:slseaﬂed'lmlm’ For e

' ulled lmy’ lmagessomenmesfaﬂintothsmgory mellwyoﬂcnwﬂl'look‘tlnm
 with considerable information discarded.

PR (compression) : {decompression) data

Fig. 7.1 A General Data Compression Scheme,

- The compression ratio = ",1,z

- Where: 5. number of bits before compression,

. 8, number of bits after compression




7.2 Run-length Encoding (RLE):

RLE is a very simple form of dats compression in which runs of data (that is, sequences in
which the same data value occurs in many conseculive data elements) are stored as a single
data value and count, rather than as the original run ‘l‘hisismostmemlonchnthnconuins

myadnmfwmh,:imp)egmp!ﬁc

Smfcé/e /ar' 1o, /r‘a,l«mgs”, BN”’JJ ‘%

Example 1:

For example, consider a sereen containing plain black text on a solid white background,
There will be many long runs of white pixels in the blank space, and many short runs of black
pixels within the text. Let us take a hypothetical singlescan line, with B representing a black
pixel and W representing white:

WHHWAWWR A W W BHH WA WKW AW WA BBBWRWIW R W WA WIH W IR W WWW WKW WBAWNN WA W AW
=N of Symbel - EF

If we apply the run-length encoding data compression algorithm to the above hypothetical
scan line, we get the following:

12W1B12W3B24W1B14W @ No. of Sywrbe /=18
This is 1o be interpreted as twelve W's, one B, twelve W's, three B's, etc.

The run-length code represents the original 67 characters in only 18. OF course, the actual
format used for the storage of images is generally binary rather than ASCII characters like
this, but the principle remains the same. Even binary data files can be compressed with this
method; file format specifications often dictate repeated bytes in files as padding space.
However, newer compression methods such as DEFLATE often use LZ77-based algorithms,

a generalization of run-length encoding that can take advantage of runs of strings of
characters (such as BWWBWWBWWBWW).

Lojoot  LfFIF]w B2W 182w 181w 182w
J’M-/: /2 a)ﬂ‘ ./ s\’,ug s
7.3 Fixed-Length versus Variable-Length Codes

Example 2:
Swpmﬂmmhveammeﬂmmwlﬁwmnmﬁhmmmsm

appearing with the following

Chusciensinfile__[a b ¢ d ¢ [ |

A binary code encodes cach charactér as 8 binary string or codeword, We would like to find a
mwmmmwmnmmummmwnumwu

for our problem (note that a fixedlength code must have at least 3 bits per codeword).

2




Charactersinfile [a b ¢ d ¢ |
li':m'_m_z-m
D01 010 011 100 101
Eyitabio }e 0 101 100 111 1101 1100

. Thefixed length-code requires 300 bits to store the file. e sE T st 4 1
= ] (@534 1303+ 1293 +16°3 4993+ 5%3) =300 = 3% (4 + (34 -~ +5) = ] =

(45%1+ 13%3 1293 + 16%3 + 9%4 + 5*4) = 224 NS i oy et

Compression ratio = 300/224 = 1.339

7 .4 Huffman Coding

The basic idea in Huffman coding is simple. Rather than using a fixed length code (8 bits) to
_ w s ‘ . represent the grey values in an image, we use a variable length code, with smaller length
j i oz ST - codes comesponding to more probable grey values. A Huffman encoder takes a block of input |0 D j i 53
..... PR T characters (grey values) with fived length and produces a block ofoutpm bitsofvaﬂam R
e i - () Iengﬂxltisnﬂxod-to-vmablclmmhcode.‘l'he 20 h i A r A
lnp\nblockswnhhigb obabiliti cword

A small example will make this clear. Suppose we have a 2-bit greyscale image with only
four grey levels: 0, 1, 2. 3, with the probabilities 0.2, 0.4, 0.3 and 0.1 respectively, The
following table shows fixed length and variable length codes for this image:

Now consider how this image has been compressed. Each grey value has its own unique identifying
ood&m“mrnmbuofunwphwlmhm'bm"hwm(ha
probabilistic scnse;

Low= (02*3)+04* D +(03*2)+(0.1*3)=19
e S © Notice that the longest codewords are associated with the lowest probabilities. This average is indeed

smaller than 2. This can be made more precise by the notion of entropy, which is # measure of the
-amount of information




7 .5 Entropy Concept
The entropy H of an image is the theoretical minimum number of bits per pixel required to encode the

Wwithnoloubﬂnfan-ﬂdn.hhdnﬁudby.
H=-XZ} p,log.(p,)

H= -(02log ,(0.2) + 0.4 log ,(0.4) + 0.3 log , (0.3) + 0.1 log »(0.1) )
= 1.8464

Where the index i is taken aver all greyscales of the image, and p, is the probability of grey |

level _ occurring in the image, This means that no matter what coding scheme is used, it will
never use less than 1.8464 bits per pixel. On this basis, the Huffman coding scheme given
‘above, giving an average number of bits per pixel much closer to this theoretical minimum
than 2, provides a very good result.

7.6 Huffman Algorithm

. Determine the probabilities of each grey value in the image.

. Form a binary tree by adding probabilities two at a time, always taking the two lowest

available values,
- Now assign 0 and | arbitrarily to each branch of the tree from its top.

4
To see how this works, consider the example of a 3-bit greyscale image (so the grey values are 0_7)
with the following probabilitics: ;

Greyvalue | 0 [ 1 [ 2 [ 3 T 4 [ 6 | 6 | 7 |
For these probabilities, the entropy can be calculated as follows,

H=-(0.19log {0.19) + 0.25 log .(0.25) + 0.21 log , (0.21) + 0.16 log +(0.16)
+ 0.08 log .(0.08) + 0.06 log -(0.06) +0.03 log ,(0.03) + 0.02 log .(0.02))
H=26508

The fixed length-code = (0.19 + 0.25 + 0.2] +0,16 + 0.08 + 0.06 + 0.03 + 0.02) *3
=3




W5 belber to re-index
| Thewm 47 (m;;) i | i)
3 | . » b3 0.19 040 ! et ! - L GE '
TR i3 025 m i et ST
R . e 0.21 ;
L6 ﬁ_ .35
0,08 —_I— 019
X O.II
003
l ] el
_ Figue? 2 Forming the Holfman codewee kbl
We can now combine probabilities two at a time as shown in figure7.2. Note that if we have
‘a choice of probabilities we choose arbitrarily. The second stage consists of arbitrarily
assigning 0's and 1's to each branch of the tree just obtained. This is shown in figure7.3.

002

Figure7.3 Assigning 1's and 0's 1o the branches

=t - To obtain the codes for each grey value, start at the | on the top right, and work back towards B [;
I ~ the grey value in question, listing the numbers passed on the way. This produces: I _ i




‘oz zd.'yt Ca des
01
1o 3
1o«
nio 5

111110 -
i1 ; 6dyit codes

- DU e W=D

L., =(0,19%2) + (0.25%2) +(0.21°2) + (0.16+3) + (0,08%4) + (0.06%5) + (0.03%6) + (0.02%6)
=27

The compression ratio = 3/2.7 = 1.111
which is a significant improvement over 3 bits per pixel, and very close to the theoretical minimum of

2.65083wmbyumwy Huffman codes are uniquely decodable, in that a string can be decoded
in only one way. For example, consider the string to be decoded with the Huffman code gencrated
above.

LT o051 1000001000811 1110

There is no code word |, or 11, so we may take the first three bits 110 as being the code for grey value
3 mmm“mmmmmmzmmuum&numo:ueode
mmmmmmmwwmmmmuiummsommm
this string as grey level 4. Continuing in this way we obtain:

l(llliuu
4 4 0 0

04 04 DA =l
oy 0l 0.‘{ 04

0.2 =03
wil

0l
mal
O




Example 6

s » |« Characters to be encoded: A, B, C, D, E ,_ e ety 2 4ioss
oSt e et - probability to oceur: p(A)=0.3. p(B)=0.3, p(C}=0.1, p(D)=0.15, p(E)=0.15 S S
VR T S S R codingtree  probability symbol code WiV : ¢




L Canstruct o Huffman code for each of the probability tables given:

L T T
A2 4% a3 a2 92 42 .43
A3 48 1 a4 a2 41 e

In cach cise determine the average bits/ pixel given by vour code.

2, From vaur results of the previous question, what do think wre the conditions of the probability
distribution which give tise 1o a high compression rate using Huffoun coding”

3. (a) Given the following 1-bit image:

4
4
4
4
4
2
2
3

Mmoo

transform it 1o i -bit fnage by removing the least mest siguificant bit plane. Construct
a Hufftan code on the resalt mnd determine the average mumber of bits, pixel used by
e cule,

(b Now apply Huffisan coding to the original innge and determine the average anmber of
bits: pixel used by the code.
(€] Whick of the two codes gives the best rale of compression”




Image Compression, the DCT

Chapter Eight



Chapter Eight Image Compression, the DCT

Jmage Compressiove
1. The JPEG Standard:

The name “JPEG” stands for Joint Photographic Experts Group, the name of the committee
that created the JPEG standard. JPEG/EXif is also the most common format saved by digital
cameras. It was developed in 1974 by N. Ahmed and T. Natarajan. The JPEG is not suited
for line drawings and other textual or iconic graphics, where the sharp contrast between
adjacent pixels can cause noticeable artifacts. Such image is better to be saved in a lossless
graphics format such as: TIFF, GIF, PNG or a raw image format. JPEG compression
should not be used in senarios where the exact reproduction of the data is required, such as
some scientific and medical imagining applications and certain technical image processing
work.

2. JPEG Codec Procedure

Although a JPEG file can be encoded in variouse ways, the encoding process consists
several steps:

1. Color Space Transformation:

The representation of the colours in the image is converted from RGB to Y CgCr(or
informally, YC,C,) where Y is the luma component which represents the brightness. Cg
and Cgare the chrominance components for Blue and Red color.

2. Down Sampling:

Due to the densities of color and brightness sensitive receptors in the human eye,
humans can see considerably more fine detail in the brightness of an image (Y
component) than the Hue and color Saturation( Crand C, components) of an image.
The spatial resolution of the chrominance data is reduced, usually by factor of 2 (called
“down-sampling” or “chroma sub-sampling” ). The ratios at which the down sampling
is ordinary done for JPEG images are 4:4:4 (no sampling), 4:2:2 (reduction by factor of
2 in the horizontal direction) , or most commonly 4:2:0 (reduction by factor of 2 in the)
used This reflect the fact that the eye is less sensitive to the color details than to fine
brightness details. This step is some time skipped

3. Block Splitting:

After down sampling each channel must be split into of 8x8 blocks. Depending on
chroma sub-sampling this yields MCU (Minimum Coded Unit) of size 8x8 blocks (4:4:4
no sampling), 16x8 (4:2:2), or most commonly 16x16 (4:2:0). If the data for a channel
does not represent an integer number of blocks then the encoder must fill the



Chapter Eight

remaining area with some form of dummy data. Filling the edges with a fixed color, for
example black can create ringing artifacts along the visible part of the boarder, while
repeating the edge pixels is common technique that reduces such artifacts.

Next, each block of (Y, C,, C,) component is converted to a frequency domain
representation using a normalized two-dimensional DCT. Similar to a DFT, DCT
produces a kind of spatial frequency domain spectrum.

5. Quantization:

The amplitudes of the frequency components are quantized. Human vision is much
more sensitive to small variations in colors or brightness over large areas than to the
strength of high-frequency brightness variations. Therefore, the magnitudes of the high
frequency components are stored with a lower accuracy than the low-frequency

components. The 8x8 quantization matrix is:

16
12
14
14
Q=8
24
19
72

6. The resulting data for all 8x8 blocks is further compressed with lossless algorithm, a
variant of Huffman encoding.

11
12
13
17
22
35
64
92

10
14
16
22

-
i

55
78
95

16
19
24
29
56
64
87
98

24
26
40
)
68
81
103
112

40
o8
57
87
109
104
121
100

51 61]
60 55
69 56
80 62
103 77
113 92
120 101
103 99

Image Compression, the DCT

4. Discrete Cosine Transform :

7. The decoding process reverses these steps, except the quantization because it is
irreversible
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['_

JPEG Diagram

JPEG
Compressed
Bisyeam

Fig. 8.1 Image compression/decompression block diagram

N-1N-1 (2y + 1)in (2¢ + 1)

Gli,J)) = cic; Z Z g(y.x)cos aN 8T N

=0 y=0

e = I/N if i =0, ¢, = /2/N otherwise. Similarly ¢,

Example: An example of 8x8 8-bit sub-image is,

(52 55 61 66 70 61 64 73
63 59 55 90 100 85 60 72
62 59 68 113 144 104 66 73
g= |63 38 71 122 150 106 70 69
67 61 65 104 126 88 68 7D
0065 60 T0 TT 68 B TS
5 7161 59 55 61 65 &
|87 79 69 68 65 76 T8 91

Fig. 8.2 The ( 8x8 ) sub-image picture and it matrix values as 8-bit grayscale intensities
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o Before, computing the DCT of the 8x8 block, the values are shifted from a positive
range to one centred around zero. For an 8bit image, each pixel value falls in the
range [0-255]. The mid value, the 128 is subtracted from each entry to produce a data

range centred around zero, so that the new entry range is [-128,127].
g(xy) =g(xy)-128

e This step reduces the dynamic range requirement in the DCT processing stage that
follows. Mathematically, it equivalents to subtracting 1024 from the DC coefficient
after performing the transform, which may be better way to perform the operation on
some architectures since it involves performing only one subtraction rather than 64

of them. The step results in the following values

<
+

[ =76 =73 =87 —62 -58 —67

65 —69 -73 -38 -19 —43

66 69 —60 —15 16 -24

9= | 65 -70 =57 -6 26 -22
61 —67 —60 -24 =2 —40

-49 -63 —68 -58 -51 —60

—43 57 —64 —69 -T3 —67

| 41 —49 -39 —60 -63 -52

()
-

~41538 3019 -61.20 T4 5613

447 <2186 6070 1025 1318

G- ~46.83 73T T713 -UN -Bm
-48.53 1207 3410 ~147% -10.24

1212 <6455 -1320 395 -~188

-7.73 291 238 -53%4 <238

-1.03 0.18 042 -242 088

017 014 <107 419 =117

(b)

Giving:

-415 -3 -E 27 5¢ -2
-47 7 77 =24 =25 10 <
-45 12 14 i5 «10 2
12 -7 ) X -4 -2 b -3
-8 3 a3 -6 -3 1 4
-1 0 -3 -1 -3 4

‘ 1 -4 o 0

Fig. 8.3 (a) g matrix (b) transformed G matrix (c) rounded G matrix

-64
-59
—-62
-58
~60
-0
-63
-50

~20.10
~1.09
493
6.30
1.75%
0.94
-3m
~0.10

-55

-59

542
1 &3
~2.79
4%
412
080

-

046
488
~5.65

195 | |¥
34

1.85
-0.66

168

Note DC Coefficient has

lots of power

Image Compression, the DCT

Very little power in
high frequencies
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The quantzed DCT coeficients are corputad with

By = round (ci) for j =0,1,2,...,T;k=0,1,2,...,7
Q).i

“
Quantize using a quantization matrix such as:

{ i1 1o i 4 0 51 61
Iz NI 4 15 & 3% & a3 | Better quantization at
14 y 1 4 40 5 Y s low frequencies

¢ | 22 zs 51 87 a0 €2

ST 37 56 .68 109 Coarse quantization
24 5\ 5% €4 EL 108 113 w2 at high frequencies
LE €4 TE 87 103 13% 120 101

(72 %2 N\ %= AT 200 203 99 |

o 0o v oo oo
o 0600

" JE
“Qrder the coefficients in zig-zag order:
(~2¢ -3 - 3 g -1 C o | e

-z -4 1 . 0 0 H |
3 e -3 -1 LV
o ¢ ¥ & B & 3 / '/ Aol

B ctodl K23 sud vy et =J

-26,-3,0,-3,-2,-6,2,-4.1,-41,1.51,2-1.1,-1,2000,
0,0 -1-100.00000.000.0000.00000000
0,0,0,0,00.0,0,0,0,0,0,0,0,0,

Run-length encode:
-26,-3,0,-3,-2,-6,2,-4,1,-4,{2x1),51,2,-1,1,-1,2,{5x
0y.-1,-1,EOB

Huffman code what remains. Encoding is complete.
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JPEG Decoding

Decoding is simply the reverse of encoding
Reverse the huffman, RLE encodings
Dequantize

Apply inverse DCT (IDCT)

Vie, i) = 30 S eieyTih. fve SLEINT o (22 4 11w

F—

» Add 128 to convert back to unsigned

JPEG Compression ratio

w Compression ratio depends on how large the values in the
quantization matrix are
m 10:1 achievable without noticeable loss

= 100:1 achievable, but artifacts are noticeable.
Image Lossless compression Lossy compression
Original ‘ ’

Processed by

Canny edge detector




Mathematical morphology (1)

X 9.1 Introduction

Maorphology, or merphology for short, is o branch of imnge processing which is particularly useful for
analyzing shapes in images We shall develop hasic morphiologicsl tools for investigation of binary
imnges, and then show how to extend these tools to greyscale images. MATLAR has many tooks
for binary merphology in the image processing toolbox: most of which can be used for greyseale

| morphology ms well.

9.2 DBasic ideas

| The theory of mathematical morphology can be developed in many different ways. We shall adopt

one standand method which nses operations ou sets of poluts. A very solid and detalled account

| can be found in Huxalick and Shapiro 5]

" mﬂ.‘.ﬁﬂ“

Suppuose that A is 4 sct of pixels in o binary imege, and w = {2, ¢) is a particular coordinate peoint,
Then Ay & the wet A “trauslated” in divection (#,y), That i

Ao = {{ab) 4 () s (o, b) € A).

For example. in figure 9.1, /0 §s the evoss shaped set, and o« {2,2), The set A has been shifted in
the r and y directions by the values given in w, Note that here we are wsing matris coordinntes,
rather than Cartesian coordinates, =o that the origin is at the top left, r goes down and y goes

A ACTORS,

~ Reflection
1T A is wet of pixels, then its reflection, denoted A, is obtained by reflecting A in the origin:

Aw {[-x. 9 (xw) € A}

For examples, in figure 9.2, the open amd closed eireles form sets which nre reflections of each othor,

Tigare P, Tadkct'nn




Suppose A and 5 are sets of pixels. Then the ddation of A by B, denoted A& 3, 15 defined as
AaB= |J A
e

ADB = e, y) + () 2 2 y) € A fuv) € B}
From this luat definition. dilstion s shown to boe commutative: that

Aol - oA

';)m poedint o o _,.‘.:..,.
cotrse just A ftself In this example, we

ik ' the osiginul position of the object. Note that Ay ) i of
=4 o have

B (0,00 (1,1, (- LD (L -1 (- 1 1)
| andd thoe these wre the coordinates by which we translate A,

In general, A@ B ean be obtained by replacing every point (2. v) in A with a copy of B, placing
the (0,0) point of B at (2, y). Equivalently, we can replace every point (n.e) of B with a copy of
A

EIE R R

EIE R R




Structuring Elements

assume that A is the image being processe

to as a structuring element or as u kerne

f J

Reflection and transmission are used extensively to formulate

operations based on so-called strueruring elements (SEs): small sets
of subimages used to probe an analyzed umage for properties of

mterest

Examples of structuring
elements: shaded square
denotes a member of the SE
The origins of SEs are
marked by a black dot
When working with 1mages.
SEs should be rectangular:
append the smallest number
of background elements

MATLAB Commands

Dilation in MATLAD s perforine

» imdilate(inage kernel)

» td=indilate(t, eq);
(1,2,

>> subpl

with tls

e 1
— o JES SR SN
! !
" i 5 - et | I -
l.] . . . ]
. et S s - — -t
EF
—— e
| |
—

ol

Orandg

orrnand

1
0
1

I and B 18 a small s
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9.3.2 Erosion

=
U
o
EA
B
@
o
-

o |
=3
!
EF
Eg
it
3|
i
33
i
3
35
i
mm

mark down the corresponding (0,0) point of B. The st of all such points will form the erosion.

An example of erosion is giver

Figuro 9.6: Eroslon with a crossshaped structuring olement
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Ach-Aah,
pick n binary WQW\MMM and 8 stracturing element. Then the Teft hand =ide of this

-0.3.3 An application: boundary detection

U0 s inage, and B w small structuring element consisting of point symmetrically places about
-~ the origin, then we can define the boundary of A by any of the following methods:

W ) A-(10B) « inlomal boundary”
(i) (A@aR) - A “external bowndary”
(iii) (A@RB) (A5 B  “morphological gradiont™

I esch definition the mims tefers t set difference. For some examples, soe figun: 9.9, Note that the
internal boundary consists of those pixels in 1 which are at jts edge; the external boundary consists
of pixels outside A which are just next to it, and that the morpbological gradient is o combination

© of both the internal and external boundaries.

To see some exsmples, choose the image rice .tif, and thresbold it to obtain a binary image:




Example:

rico=imread('rice tif');

» rerice>110;

Then the mternal boundary is obtained witl

>> re=imerocde(r,sq)
> T ant=rk"re;
subplot(

1
subplot(i 2

1
0
5



\s we've seen, dilation expands the components of an unage while
the erosion shrinks them

Opening generally smoothes the contour of an object and elimmate
thin protrusions

Closing nlso tends to sinooth sections of contours but fusing narrow

breaks and long. thin gulfs and eliminating small holes and filling

gaps in the contowr

Next chapter explains these two concepts in more detail.

O
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~ Mathematical morphology (2)

1012 Closing ‘
 Analogous 1o opening we can define clowng. which may be considered as a dilation fellowed by an

110.1 Opening and closing

These operations may be considered s “second Jevel” operations; in that they buikl on the bsic | .

WMMMMMmMuanmMMM. ‘

10.1.1 Opening
Given A and a structuring element B, e opeming of A by B, dewotesd Ao B, is detined as:

AcB - (AaBan.
So an opening consists of an erosion followed by w dilation, An equivident definition is
AcB B, B, C AL

| That is, Ao B I the union of all traslstions of I which fit inside A, Note the difference with
vrowion: the erosion consista only of the (0,0) point of 7 for thoso translationn which fit inside A;
Lse upening conslsts of all of B. An example of opening bs given i figure 1001

eroson, and s denote] Ao
AeB = Aamah

' Another definition of closing & that & € e /7 if alf translations /7, which contain » have non-empty

lutersections with A Au example of closing & glven b figure 1002 The clostg operstion st lsfies
O 1 23454 D 123 45 8 01 23456
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so-d-cocoo
DO =M H OO m~O
DO~ H SO O
OO0 wH "HODO WO

CCCHOOT ™=

R R A IR SR -

Omemmm=mOo000

D e - O OO

Peocooooeoo

ooccocoooo

OCO0mwmmocooOoO

OO0 DO

OO0w=-wweoOOOO

eooeocoooo

O~ -~O0O0CO

Qme=mme0oCc0O

coococoo0oD0

>> imopen{test,cr)

oooo0ocoo0ooo

ocoo-~ccoo0co

OOoOmM=mw=0O0OO0O0O

COHHN—~OOODO

OO0OwWw=m0o0O0OO0OO0O

CoOUmCOCOO0O

OO0 —~0OCODO

Qe e==mD00CO0
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Note that in vach viese the image has boeen separited fnto disting compoments, and the ksver part

‘n'hummmﬂmmm@

>> inclose(test,sq)
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An application: noise removal
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Opening and closing

A binary image
corrupted with
noise.

A structuring

element

Eroded image

Opening of 4
(dilation of
eroded 1mage)

Dilation of the
opening

10.2 The hit-or-miss transform

T"his= s a powertul method for inding shapes in immges \» with all other morphological algorithms

it can be defined entirely o terms of dilation and erosdon: i this case, eroston only
Suppose we wish 1o Jocate 3 % 3 squate sh

boure 10,5

[ L AR J [ ]

| L AR J L]

1 e e °

{ 11 !

[ [

Flgure 10 \ ! | e ni J il

| performed an e n AR h 17 bedng U square steocturibg element, we would obtuk
the result giv n figare 1004



The result contains two pixols, as there are exactly two places in A where B will fit. Now suppose '

we also crode the complement of A with a strocturing element € which fits exnetly around the 3 <3
| square; A and ¢ are shown in figuro 10.7, (We nssume that (0,0 is ot the oentre of €'

MUUICIOUIUOICIOOUCICON
ole| | Jof | | [of | | [o]o]e

EOOEEOEEROREROO0
eje/ejejejejo/0s/0 0000

Figure 10.8: The erosion A & ¢

The interseetion of the two eroston operations would produce just one pixel at the position of

the centre of the & x 3 square in A, which s just what wo want. 1§ A had contuained more than one
| square, the final result would hiwe been single pixels at the positions of the centres of each. This
combination of erosions forms the Lit-or-miss transform.
In general. if we are looking for a particular shape in an imnge, we design two structuring
elements: By which is the same shape, and By which fits around the shape. We then write B =
(B By) and

 A@B-(AeB)N (A B!




Example:

10.3.3  Skeletonization

Why skeletonization

In real world there is a need for skeletonization of images due to following reasons:

To reduce the amount of data and time required to be processed. .\

Extraction of critical features such as end-points, junction-points, and connection among the components. .Y

The vectorization algorithms often used in pattern recognition tasks also require one-pixel-wide linesas .Y
input.

Shape analysis can be more easily made on line like patterns. ~ .£

Applications
Handwritten and printed characters
Fingerprint patterns
Chromosomes & biological cell structures



Aolt S (Ae )
tAaB)oR | (A6R)- ({A&B)eB)
(Ao2R)oB | (AS2B) - ({AG2R)oB)
(A03B)e i | (A3B) - ((AG3B)eB)

+
.

(Aehh)ea (AckB) - ((AokR)en)

Table 10.1: Operations wed 10 coustract the skeleton

Here we use the comvention thit s scquence of & erosions using the same strocturing element
7 is denoted A © EB. We continue the table until (A © k) o B is empty. The skeleton is then
obtained by taking the unions of all the set differences. An example is given in figure 10.17, using
the cross structuring element.

Since (A< 20) o B ks empty. we stop here. The skeleton ks the union of all the sets in the third
column; it is shown i figure 10,18 mmwmumw%m
for details see Serra [12.

This algorithm again can be implemented very easily; o function (o do so is shown in fgare 10,19,
w«mwmmmmw
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1. For each of the following images A and stracturing elements 73

the dilation A5

Check your answers with MATLAB.
2. Suppose a squiste object was eroded by o circle whose radivs was about one quarter the sid

caleulate the erosion A6 B

B, the ppening A o 7 miwd the closing Ae 1.

of the square. Draw the result,
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centres of the top and bottom,
(e} w croms formed fram an 11 x 11 square with 3 x 3 squares taken from ench comer.

In each case check your answer with MATLAR

4. Repent the above question but wee the cross stracturing element.
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Wavelet Analysis

Wavelets are short wavelike functions that can be scaled and translated, Wavelet transfoems
take any sgnal and express it i terms of scaled and transiated wavelets, The resulting wavalat
transform is 3 represantation of tha signal at differant scales. The transform allows you to
mampulate features 3t dfferent scales independeantly, such as suppressing or strengthening
some particular feature.

Mathematica provides 3 full-featured implemantation of wavelat analyss, supporting many
wavalat Families, continuous wavelet transform, and sevaral discrate wavalet transforms
(standard, stationary, liftng, packet, ...). Discrate wavelet transforms directly work with arrays
of any dmension as well as sounds and images, giving a symbolic representation of the
transform, which can be directly processed or visualized, etc.

Scaling and Wavelet Functions

‘WaveletPhl — scaling function ¢ (“father wavalet”) for any wavalet famiy
WaveletPsi — wavelet function ¢ (“mother wavelet”) for any wavelangth family
Wavelet FilterCoefficients — wavelst filter coafficients

Discrote Wavelet Families
m representation of the Haar wavelet

functions. Unlike two basis functions for 1-D signals at & given scale, there are four basis
functions for 2-D signals as given in equation (2.11).
#lu, v) = $(u)é(v)
¥n(u,v) = Y(u)o(v)
Va(u,v) = duhy(v)
$al(u,v) = $(u)y(v)
~ §(u,v) can be thought of as the 2-D scaling fanction; ¥:(u, v), ¥a(u, v) and ¥s(u, v) are the

~ three 2-D wavelet functions. For a 2-D input signal z(u,v), the transform coefficients are
- obtained by projecting the input onto the four basis functions given in equation (2.11). This
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2. Wavelets ( Kernels )Properties
e Scalability, Separability, Translatability

O(l’,y) = 0(.1‘)0(}') is a one separable two dimensions scaling

function

Horizontal detailis @ (x,y) = @(x)0(y)
Vertical detail is @'(x,y) = 0(x)@(y)
Diagonal detail is e’ (x,y) = @(x)@(y)

The general Wavelet formula can be represented as,

]

0, k(x)= 200(2Ex—k)

| J
J

t/),,k(‘ o) =22 @( Z.-_ x—Fk)

3. Wavelet Applications

e Numerical Analysis: like partial differentiation

e Signal analysis: like audio/video/image compression, texture
classification and finger print

e Control Applications: like motion detection and tracking and robot
position, Encoder/quantization de-noising

e Audio Applications: like speech recognition, speech enhancement,
and audio de-noising
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12.4 Wavelets and Compression

Wavelets are useful for compressing signals but they also have far more

extensive uses. They can be used to process and improve signals, in fields such
as medical imaging of particular use. They can be used to remove noise in an

image, for example if it is of very fine scales, wavelets can be used to cut out this
fine scale, effectively removing the noise. "Image compression algorithms aim
to remove redundancy in data in a way which makes image reconstruction
possible." This basically means that image compression algorithms try to
exploit redundancies in the data; they calculate which data needs to be kept in
order to reconstruct the original image and therefore which data can be ’thrown
away’. Redundancy reduction is aimed at removing duplication in the image.

Wavelet 1 - Compressed
Image | — — | Quantize | | Encode | —
Transform IQ / s I Image

i Compression of an image

Compresssed o Approximate Inverse Round off to
Image el D(mdo| - .\Y:m'h'l — \yu\‘vlvl — | integer values,
Iransform Iransform create Image

rigure 2 Decompression of an image

Figure 12.1 Image compression/de-compression block diagram



Two dimensional discrete wavelet transform

The DWT described in the previous section is for one dimensional (1-D) signals. Images are

2-D and are analyzed using a separable 2-D wavelet transform. A 2-D separable transform

is equivalent to two 1D transforms in series. It is implemented as a 1.D row transform

followed by a 1-D column transform on the data obtained from the row transforn  Figure
12.2 shows the filter bank structure for computation of a 2-D DWT and IDWT.

in the figure corresponds to the value zero.




Chapter Eleven 2 D Discrete Wavelet Transform

12.6 Why Down and Up Sampling ?

The low and high-pass filters L(z) and H(z) split the frequency content of the
signal in half. It therefore seems logical to perform a down sampling with a
factor two to avoid redundancy. If half of the samples of the filtered signals cl(k)
and ch(k) are reduced, it is still possible to reconstruct the signal x(k). The

down sampling operation s!:.].-_%}only the even-numbered components of the filter
output, hence it is not invertible. In the frequency domain, the effect of
discarding information is called aliasing. If the Shannon sampling theorem is
met, no loss of information occurs. The sampling theorem of Shannon states that
down sampling a sampled signal by a factor M produces a signal whose
spectrum can be calculated by partitioning the original spectrum into M equal
bands and summing these bands. In the synthesis bank the signals are first up
sampled before filtering. The up sampling by a factor {1 2)is performed by
adding zeros in between the samples of the original signal. Note that first down
sampling a signal and than up sampling it again will not return the original
signal. The transpose of (L ,zhincér-ghsposes come in reverse order, synthesis
can be preformed as the transpose of the analysis. Furthermore

(201 2) = since (T2) s the right-inverse of ! 2). This indicates that it is
possible to obtain the original signal again with up- and down sampling. By first
inserting zeros and then remaoving them, the original signal is obtained again.

r(0}
r(l) x(0)

r(0))
0

r=| r(2) (12)r=| 2(2) \ (12)(12)x= | 2(2)
x(3) x(4) 0
x(1) l )| x(4)
LL HL
Approximati Horizontal Details
=

Coefficients

LH HH

Vertical Details Diagonal Details
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Example-1

-

2-D Decomposation of Satum Image 10 level |

Appronineion Scrizostal Betail

Tortical Dutadl Diaguma) Butail

Example-2

Coarse  we——p Fine

2. Level wavelet decompasition of Lighthouse image



x=[12321]andh=[321].

—trllf . the asnwer from matlab of circular convolving the x and his [7 9 14 14 10]. But HOW? —trllf

12312

Ll (791414 10] i
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12.8 Wavelet Families, Haar and Daubechies Filters

The one dimension Haar filters are:

LOWPASS: L 1)
V2
HIGHPASS: -1 -1]
2
An example of Daubochies basis vectors (there are many others) follows:
LOWPASS:  ——(+, 345, 3-8, 1-/5)
42

HIGHFASS. —'—,!!-\'3. B-5 345, 1=/
e ™

-

Te usa the basis vectors to implement the wavelet transform, they must be zero-pad-
ded to be the same size as the image (or subimage). Also note that the origin of the

EXAMPLE 2-14

We want to use the Haar basis vectors to perform a wavelet transform on an image by dividing
it into 4 x 4 blocks. The basis vectors need to be zero-padded so that they have a length of 4, as

follows:

LOWPASS: —(1 1 0 Q]

HIGHPASS: —[1 -1 0 0]

origin
ligned wi i igi inci the first vec-
These are 2 d with the image so that the origins coincide, and 'ﬁ;e result from
tor inner product is placed into the location corresponding to the origin. Note that when the vec-
tor is zero-padded on the right, the origin is no longer to the right of tl?e center of .the resulting
vector. The origin is determined by selecting the coefficient corresponding to the right of center

before zero-padding.

EXAMPLE 2-15

To use the Daubechies basis vectors to do a wavelet transform on an image by dividing it into 8
x B blocks, we need to zero-pad them to a length of 8, as follows:

LOWPASS: -“/:(1—/'3', 343, 35 13 0, 0, 0, 0]
43

HIGHPASS: —\Ifz_—[l-ﬁ, /3-3, 343, -1-3, 0, 0, 0, 0]
4

T
origin



